2,942 research outputs found

    AICropCAM: Deploying classification, segmentation, detection, and counting deep-learning models for crop monitoring on the edge

    Get PDF
    Precision Agriculture (PA) promises to meet the future demands for food, feed, fiber, and fuel while keeping their production sustainable and environmentally friendly. PA relies heavily on sensing technologies to inform site-specific decision supports for planting, irrigation, fertilization, spraying, and harvesting. Traditional point-based sensors enjoy small data sizes but are limited in their capacity to measure plant and canopy parameters. On the other hand, imaging sensors can be powerful in measuring a wide range of these parameters, especially when coupled with Artificial Intelligence. The challenge, however, is the lack of computing, electric power, and connectivity infrastructure in agricultural fields, preventing the full utilization of imaging sensors. This paper reported AICropCAM, a field-deployable imaging framework that integrated edge image processing, Internet of Things (IoT), and LoRaWAN for low-power, long-range communication. The core component of AICropCAM is a stack of four Deep Convolutional Neural Networks (DCNN) models running sequentially: CropClassiNet for crop type classification, CanopySegNet for canopy cover quantification, PlantCountNet for plant and weed counting, and InsectNet for insect identification. These DCNN models were trained and tested with \u3e43,000 field crop images collected offline. AICropCAM was embodied on a distributed wireless sensor network with its sensor node consisting of an RGB camera for image acquisition, a Raspberry Pi 4B single-board computer for edge image processing, and an Arduino MKR1310 for LoRa communication and power management. Our testing showed that the time to run the DCNN models ranged from 0.20 s for InsectNet to 20.20 s for CanopySegNet, and power consumption ranged from 3.68 W for InsectNet to 5.83 W for CanopySegNet. The classification model CropClassiNet reported 94.5 % accuracy, and the segmentation model CanopySegNet reported 92.83 % accuracy. The two object detection models PlantCountNet and InsectNet reported mean average precision of 0.69 and 0.02 for the test images. Predictions from the DCNN models were transmitted to the ThingSpeak IoT platform for visualization and analytics. We concluded that AICropCAM successfully implemented image processing on the edge, drastically reduced the amount of data being transmitted, and could satisfy the real-time need for decision-making in PA. AICropCAM can be deployed on moving platforms such as center pivots or drones to increase its spatial coverage and resolution to support crop monitoring and field operations

    Temporal dynamics of maize plant growth, water use, and leaf water content using automated high throughput RGB and hyperspectral imaging

    Get PDF
    Automated collection of large scale plant phenotype datasets using high throughput imaging systems has the potential to alleviate current bottlenecks in data-driven plant breeding and crop improvement. In this study, we demonstrate the characterization of temporal dynamics of plant growth and water use, and leaf water content of two maize genotypes under two different water treatments. RGB (Red Green Blue) images are processed to estimate projected plant area, which are correlated with destructively measured plant shoot fresh weight (FW), dry weight (DW) and leaf area. Estimated plant FW and DW, along with pot weights, are used to derive daily plant water consumption and water use efficiency (WUE) of the individual plants. Hyperspectral images of plants are processed to extract plant leaf reflectance and correlate with leaf water content (LWC). Strong correlations are found between projected plant area and all three destructively measured plant parameters (R2 \u3e 0.95) at early growth stages. The correlations become weaker at later growth stages due to the large difference in plant structure between the two maize genotypes. Daily water consumption (or evapotranspiration) is largely determined by water treatment, whereas WUE (or biomass accumulation per unit of water used) is clearly determined by genotype, indicating a strong genetic control of WUE. LWC is successfully predicted with the hyperspectral images for both genotypes (R2 = 0.81 and 0.92). Hyperspectral imaging can be a very powerful tool to phenotype biochemical traits of the whole maize plants, complementing RGB for plant morphological trait analysis

    Capturing Spatial Variability in Maize and Soybean using Stationary Sensor Nodes

    Get PDF
    • Irrigation in agriculture maximizes crop yield and improves food security globally • Irrigation scheduling is strongly based on the ability to accurately estimate the appropriate amount and timing of water application • The timing of the irrigation can best be informed through the crop canopy stress, and the amount of irrigation is informed through soil moisture depletion • Developing upper (non-water stressed) and lower (non-transpiring) baselines for irrigated and non-irrigated maize and soybean • Investigating the relationship between the canopy stress and the soil moisture stress The canopy temperature stress and soil moisture depletion had stronger correlation for non-irrigated treatments in soybean than maiz

    UAS Simulator for Modeling, Analysis and Control in Free Flight and Physical Interaction

    Full text link
    This paper presents the ARCAD simulator for the rapid development of Unmanned Aerial Systems (UAS), including underactuated and fully-actuated multirotors, fixed-wing aircraft, and Vertical Take-Off and Landing (VTOL) hybrid vehicles. The simulator is designed to accelerate these aircraft's modeling and control design. It provides various analyses of the design and operation, such as wrench-set computation, controller response, and flight optimization. In addition to simulating free flight, it can simulate the physical interaction of the aircraft with its environment. The simulator is written in MATLAB to allow rapid prototyping and is capable of generating graphical visualization of the aircraft and the environment in addition to generating the desired plots. It has been used to develop several real-world multirotor and VTOL applications. The source code is available at https://github.com/keipour/aircraft-simulator-matlab.Comment: In proceedings of the 2023 AIAA SciTech Forum, Session: Air and Space Vehicle Dynamics, Systems, and Environments II

    Generation of OAM Radio Waves with Three Polarizations Using Circular Horn Antenna Array

    Get PDF
    This paper provides an effective solution of generating OAM-carrying radio beams with all three polarizations: the linear, the left-hand circular, and the right-hand circular polarizations. Through reasonable configuration of phased antenna array using elements with three polarizations, the OAM radio waves with three polarizations for different states can be generated. The vectors of electric fields with different OAM states for all three polarizations are presented and analyzed in detail. The superposition of two coaxial OAM states is also carried out, and the general conclusion is provided

    Ag-IoT for crop and environment monitoring: Past, present, and future

    Get PDF
    CONTEXT: Automated monitoring of the soil-plant-atmospheric continuum at a high spatiotemporal resolution is a key to transform the labor-intensive, experience-based decision making to an automatic, data-driven approach in agricultural production. Growers could make better management decisions by leveraging the real-time field data while researchers could utilize these data to answer key scientific questions. Traditionally, data collection in agricultural fields, which largely relies on human labor, can only generate limited numbers of data points with low resolution and accuracy. During the last two decades, crop monitoring has drastically evolved with the advancement of modern sensing technologies. Most importantly, the introduction of IoT (Internet of Things) into crop, soil, and microclimate sensing has transformed crop monitoring into a quantitative and data-driven work from a qualitative and experience-based task. OBJECTIVE: Ag-IoT systems enable a data pipeline for modern agriculture that includes data collection, transmission, storage, visualization, analysis, and decision-making. This review serves as a technical guide for Ag-IoT system design and development for crop, soil, and microclimate monitoring. METHODS: It highlighted Ag-IoT platforms presented in 115 academic publications between 2011 and 2021 worldwide. These publications were analyzed based on the types of sensors and actuators used, main control boards, types of farming, crops observed, communication technologies and protocols, power supplies, and energy storage used in Ag-IoT platforms

    Field-Based Scoring of Soybean Iron Deficiency Chlorosis Using RGB Imaging and Statistical Learning

    Get PDF
    Iron deficiency chlorosis (IDC) is an abiotic stress in soybean that can cause significant biomass and yield reduction. IDC is characterized by stunted growth and yellowing and interveinal chlorosis of early trifoliate leaves. Scoring IDC severity in the field is conventionally done by visual assessment. The goal of this study was to investigate the usefulness of Red Green Blue (RGB) images of soybean plots captured under the field condition for IDC scoring. A total of 64 soybean lines with four replicates were planted in 6 fields over 2 years. Visual scoring (referred to as Field Score, or FS) was conducted at V3–V4 growth stage; and concurrently RGB images of the field plots were recorded with a high-throughput field phenotyping platform. A second set of IDC scores was done on the plot images (displayed on a computer screen) consistently by one person in the office (referred to as Office Score, or OS). Plot images were then processed to remove weeds and extract six color features, which were used to train computer-based IDC scoring models (referred to as Computer Score, or CS) using linear discriminant analysis (LDA) and support vector machine (SVM). The results showed that, in the fields where severe IDC symptoms were present, FS and OS were strongly positively correlated with each other, and both of them were strongly negatively correlated with yield. CS could satisfactorily predict IDC scores when evaluated using FS and OS as the reference (overall classification accuracy \u3e 81%). SVM models appeared to outperform LDA models; and the SVM model trained to predict IDC OS gave the highest prediction accuracy. It was anticipated that coupling RGB imaging from the high-throughput field phenotyping platform with real-time image processing and IDC CS models would lead to a more rapid, cost-effective, and objective scoring pipeline for soybean IDC field screening and breeding

    Dual Crosslinked Poly(acrylamide-co-N-vinylpyrrolidone) Microspheres With Re-crosslinking Ability For Fossil Energy Recovery

    Get PDF
    Microspheres have been proposed to be applied in controlling wastewater production for mature oilfields and migrating leakage for gas and nuclear waste storage. However, it remains challenging for stacked microspheres to maintain strong blocking ability in micron-sized small pores or fractures. In this study, a novel microsphere was developed with comprehensive properties including high deformability and long re-crosslinking time upon tunable swelling ratio for the applications. A dual covalent and physical crosslinking strategy was used to develop novel microspheres reinforced by a hydrogen bond (H-bond, between pyrrole ring and amide group) and coordination bond (between chromium acetate (CrAc) and carboxyl group via hydrolysis process). The microspheres were fabricated via radical suspension copolymerization of acrylamide (AM) and N-vinylpyrrolidone (NVP) in the presence of N, Nʹ-methylene-diacrylamide (MBA) with subsequent introduction of CrAc. MBA induced the strong crosslinking through a chemical covalent bond and H-bond triggered the weak crosslinking which was anticipated to prohibit the hydrolysis of the amide group. The H-bond delayed the formation of CrAc coordination bond by delaying the formation of carboxyl groups, resulting in achieving the re-crosslinking of the microspheres. As a result, the microspheres exhibit the tunable initial size (8–165 μm) and swelling ratio (30–630 μm), with controllable network parameters. The microspheres showed high migration ability (can transport through pores with 1/16 size of microsphere itself), and long re-crosslinking time (up to 16.5 days). The re-crosslinked gel demonstrated dual network structure with districted mesh size ζ distribution
    • …
    corecore